Exercises
[0DD]Note:Exercise 1 from the written exam 9 April 2011.Let \((a_ n)\) be a sequence of real numbers, with \(a_ nβ₯ 0\).
Show that if \( β_{n=1}^β a_ n\) converges then also
\[ β_{n=1}^β a_ n^ 2 \quad \hbox{e} \quad β_{n=1}^β \left(a_ n β_{m=n+1}^β a_ m\right) \]converge.
Assuming moreover that \(β_{n=1}^β a_ n\) is convergent, letβs define
\[ a=β_{n=1}^β a_ n ~ ~ ,~ ~ b=β_{n=1}^β \left(a_ n β_{m=n+1}^β a_ m \right)~ ~ ,~ ~ c=β_{n=1}^β a_ n^ 2 \]then show that \(a^ 2=2b+c\).