EDB — 0Q8

view in whole PDF view in whole HTML

View

English

E29

[0Q8] Prerequisites:[0PD],[0PP], [0GJ], [0P6].Difficulty:*.

Let \(X\) be a metric space, and \(A⊆ X\). We want to study the ”open-close” operation \(\overline{({{ A}^\circ })}\) (which is the closure of the interior of \(A\)).

  • Show a simple example where \(\overline{({{ A}^\circ })}\) is not contained \(A\).

  • Then write a characterization of \(\overline{({{ A}^\circ })}\) using sequences and balls.

  • Use it to show that the ”open-close” operation is idempotent, that is, if \(D=\overline{({{ A}^\circ })}\) and then \(E=\overline{({{D}^\circ })}\) then \(E=D\).

Solution 1

[0Q9]

Download PDF
Bibliography
Book index
  • accumulation point, in metric spaces
  • topology, in metric spaces
  • metric space
  • closure
  • interior
  • open-close
Managing blob in: Multiple languages
This content is available in: Italian English