- E29
[0Q8] Prerequisites:[0PD],[0PP], [0GJ], [0P6].Difficulty:*.
Let \(X\) be a metric space, and \(A⊆ X\). We want to study the ”open-close” operation \(\overline{({{ A}^\circ })}\) (which is the closure of the interior of \(A\)).
Show a simple example where \(\overline{({{ A}^\circ })}\) is not contained \(A\).
Then write a characterization of \(\overline{({{ A}^\circ })}\) using sequences and balls.
Use it to show that the ”open-close” operation is idempotent, that is, if \(D=\overline{({{ A}^\circ })}\) and then \(E=\overline{({{D}^\circ })}\) then \(E=D\).
1
EDB — 0Q8
View
English
Authors:
"Mennucci , Andrea C. G."
.
Bibliography
Book index
Book index
- accumulation point, in metric spaces
- topology, in metric spaces
- metric space
- closure
- interior
- open-close
Managing blob in: Multiple languages