EDB β€” 0TD

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0TD] Let \(EβŠ† ℝ^ n\) be not empty and such that every continuous function \(f:E→ℝ\) admits maximum: show that \(E\) is compact.

    (See [0VJ] for generalization to metric spaces)

    Solution 1

    [0TF]

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English