- E15
- [10F] Prerequisites:[1H8].Having fixed \(t,s∈[1,∞]\) with \(s{\gt}t\) and \(x∈ℝ^ n\), show that \(\| x\| _{s}≤ \| x\| _{t}\). Also show that \(\| x\| _{s}{\lt} \| x\| _{t}\) if \(n≥ 2\) and \(x≠ 0\) and \(x\) is not a multiple of one of the vectors of the canonical basis \(e_ 1,\ldots e_ n\). - Hints: - use that \(1+t^ p≤ (1+t)^ p\) for \(p≥ 1\) and \(t≥ 0\); or 
- use Lagrange multipliers; or 
- remember that \(f(a+b){\gt} f(a)+f(b)\) when \(a≥ 0, b{\gt}0\) \(f(0)=0\) and \(f:[0,∞)→ℝ\) is strictly convex and continuous in 0 (see exercise [192]), therefore derive \(\frac{d\hskip5.5pt}{d{t}}(\log \| x\| _{t})\) and set \(f(z)=z\log (z)\)). 
 [ [10H]]Solution 1
EDB — 10F
View
English
      Authors:
      
       
      
      
        
                       "Mennucci , Andrea C. G."               
            .  
      
      
     
     
     
         
           Bibliography
	 
         
	 
	  
Book index
     
   Book index
- normed vector space
- Lagrange multiplier
- \( \Vert \cdot \Vert _p\) , in \( ℝ ^n\)
- \( \Vert \cdot \Vert _\infty \) , in \( ℝ ^n\)
       Managing blob in:  Multiple languages