EDB — 1FD

view in whole PDF view in whole HTML

View

English

Example 37

[1FD]We informally state this property.

If \(n≥ m≥ 1\) then \(o(x^ n)+o(x^ m)=o(x^ m)\).

To prove it, we convert it into a precise statement. First of all, let’s rewrite it like this.

If \(f(x)=o(x^ n)\) and \(g(x)=o(x^ m)\) then \(f(x)+g(x)=o(x^ m)\).

So let’s prove it. From the hypotheses,

\[ \lim _{x→ 0}f(x)x^{-n}=0 ~ \text{and}~ ~ \lim _{x→ 0}g(x)x^{-m}=0\quad \]

then

\[ \lim _{x→ 0}\frac{f(x)+g(x)}{x^{m}}= \lim _{x→ 0}\frac{f(x)}{x^{m}}+ \lim _{x→ 0}\frac{g(x)}{x^{m}}= \lim _{x→ 0} x^{n-m} \frac{f(x)}{x^{n}}+0=0. \]

Download PDF
Bibliography
Book index
  • Taylor's theorem
  • Landau symbols
Managing blob in: Multiple languages
This content is available in: Italian English