3
[1HR] Let \((X_ 1,d_ 1)\) and \((X_ 2,d_ 2)\) be metric spaces. Let \(\mathcal F\) be a family of functions \(f:X_ 1โ X_ 2\), we will say that it is an equicontinuous family if one of these equivalent properties holds.
\(โ \varepsilon {\gt}0\) \(โ๐ฟ{\gt}0\) \(โ fโ\mathcal F\)
\[ โ x,yโ X_ 1,~ d_ 1(x,y)โค ๐ฟโ d_ 2(f(x),f(y))โค \varepsilon \quad . \]There exists a a fixed monotonically weakly increasing function \(๐:[0,โ)โ [0,โ]\), for which \(\lim _{tโ 0+}๐(t)=๐(0)=0\) (\(๐\) is called โcontinuity modulusโ 1 ) such that
\begin{equation} โ fโ{\mathcal F}, ~ โ x,yโ X_ 1, ~ d_ 2(f(x),f(y))โค ๐\big(d_ 1(x,y)\big)\quad . \label{eq:equicontinua} \end{equation}4There exists a fixed continuous function \(๐:[0,โ)โ [0,โ]\) with \(๐(0)=0\) such that 4 holds.
(The result [150] can be useful to prove equivalence of the last two clauses.)