- E1
[1Q0]Prerequisites:[1GD].Let \(A⊂ ℝ^ n\) be open and \(f:A→ℝ\) in \(C^ 1\). Fix \(\overline x∈ A\) such that \(f(\overline x)=0\), and \(∇ f(\overline x)≠ 0\): by the implicit function theorem [1GD] the set \(E=\{ f=0\} \) is a graph in a neighborhood of \(\overline x\), and the plane tangent to this graph is the set of \(x\) for which
\[ ⟨ x-\overline x,∇ f(\overline x) ⟩=0~ ~ . \]Compare this result to Lemma 7.7.1 in the notes [ 3 ] : ”the gradient is orthogonal to the level sets” .
1
EDB — 1Q0
View
English
Authors:
"Mennucci , Andrea C. G."
.
Bibliography
Book index
- [3] L. Ambrosio, C. Mantegazza, and F. Ricci. Complementi di matematica. Scuola Normale Superiore, 2021. ISBN 9788876426933. URL https://books.google.it/books?id=1QR0zgEACAAJ.
Book index
Managing blob in: Multiple languages