Exercises
[1RQ] Note:Exercise 4, written exam 9 July 2011.Show that the Cauchy problem
\[ \begin{cases} yβ(x) = y(x)\big( y(x)-x^ 2\big) \\ y(2)=1 \end{cases} \]admits a single solution \(y = y(x)\), defined on all of \(β\) and such that
\[ \lim _{xβββ} y(x) = +β \quad ,\quad \lim _{xββ} y(x) = 0 \quad . \]