EDB β€” 1SF

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

E29

[1SF] Let \(f:ℝ→ℂ\) be a \(C^ n\) class function , let \(πœƒβˆˆβ„‚\) be a constant, and let \(g(x)= e^{πœƒ x}f(x)\). Show that, if \(p\) is a polynomial and \(q(x)=p(x+πœƒ)\), then

\[ p(D) g = e^{πœƒ x} [q(D) f] \quad . \]

Note that we can also write the relation above as a ”conjugation”

\[ e^{-πœƒ x} \big[p(D) [ e^{πœƒ x} f ]\big] = p(D+πœƒ) f ~ . \]

Solution 1

[1SG]

Download PDF
Bibliography
Book index
  • polynomial
  • ODE
Managing blob in: Multiple languages
This content is available in: Italian English