- E39
[1T1] Prerequisites:[118],[11K].Difficulty:*.
Let \(V=β^{nΓ n}\) a matrix space, we equip it with a submultiplicative norm \(\| C\| _ V\). Let \(Cβ V\) and let \(A,B:ββ V\) be continuous curves in space of matrices.
We recursively define \(Q_ 0=C\), and
\[ Q_{n+1}(s)=β«_ 0^ s A(π) Q_ n(π)B(π)\, {\mathbb {d}}π\quad ; \]show that the series
\[ Y(t)=β_{n=0}^β Q_ n(t) \]is well defined, showing that, for every \(T{\gt}0\), it converges totally in the space of continuous functions \(C^ 0=C^ 0([-T,T]β V)\), endowed with the norm
\[ \| Q\| _{C^ 0}{\stackrel{.}{=}}\max _{|t|β€ T} \| Q(t)\| _ V \quad . \]Show that the function just defined is the solution of the differential equation
\[ \frac{d\hskip5.5pt}{d{t}} Y(t) = A(t) Y(t) B(t)~ ~ ~ ,~ ~ ~ Y(0)=C~ ~ . \]If \(A,B\) are constant, note that
\[ Y(t)=β_{n=0}^β t^ n \frac{A^ n C B^ n}{n!}\quad . \]
1
EDB β 1T1
View
English
Authors:
"Mennucci , Andrea C. G."
.
Managing blob in: Multiple languages