Exercises
[1TX]Note:Dirichlet criterion for integrals.
Let \(f,g:[0,β)ββ\) be continuous, where \(f\) is positive and monotonic decreasing with \(\lim _{xββ} f(x)=0\), while
\[ \sup _{x{\gt}0} |β«_ 0^ x g(t)\, {\mathbb {d}}t| {\lt}β\quad . \]Then prove that
\[ \lim _{xββ} β«_ 0^ x f(t) g(t)\, {\mathbb {d}}t \]converges.