EDB β€” 1TX

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [1TX]Note:Dirichlet criterion for integrals.

    Let \(f,g:[0,∞)→ℝ\) be continuous, where \(f\) is positive and monotonic decreasing with \(\lim _{xβ†’βˆž} f(x)=0\), while

    \[ \sup _{x{\gt}0} |∫_ 0^ x g(t)\, {\mathbb {d}}t| {\lt}∞\quad . \]

    Then prove that

    \[ \lim _{xβ†’βˆž} ∫_ 0^ x f(t) g(t)\, {\mathbb {d}}t \]

    converges.

Download PDF
Bibliography
Book index
  • Dirichlet criterion, for integrals
Managing blob in: Multiple languages
This content is available in: Italian English