EDB β€” 20B

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Proposition 24

[20B] Let \(A βŠ† ℝ\) not empty, let \(lβˆˆβ„βˆͺ\{ -∞\} \); the following properties apply:

\(\inf A β‰₯ l\)

\(βˆ€ x∈ A,xβ‰₯ l\)

\(\inf A {\lt} l\)

\(βˆƒ x∈ A,x{\lt}l\)

\(\inf A {\gt} l\)

\(βˆƒ h{\gt}l , βˆ€ x∈ A,xβ‰₯ h\)

\(\inf A ≀ l\)

\(βˆ€ h{\gt}l, βˆƒ x∈ A,x{\lt} h\)

If \(lβ‰  -∞\) then also we write (substituting \(h=l+\varepsilon \))

\(\inf A {\gt} l\)

\(βˆƒ \varepsilon {\gt}0 , βˆ€ x∈ A,xβ‰₯ l+\varepsilon \)

\(\inf A ≀ l\)

\(βˆ€ \varepsilon {\gt}0, βˆƒ x∈ A,x≀ l+\varepsilon \)

Download PDF
Bibliography
Book index
  • infimum
  • real numbers
Managing blob in: Multiple languages
This content is available in: Italian English