EDB β€” 21D

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Theorem 23

[21D] If \((a_ n)_ nβŠ‚{\mathbb {R}}\) has positive terms and is monotonic (weakly) decreasing, the series converges if and only if the series

\[ βˆ‘_{n=1}^∞ 2^ n a_{2^ n} \]

converges.

Proof β–Ό

Since the sequence \((a_ n)_ n\) is decreasing, then for \(h∈{\mathbb {N}}\)

\begin{equation} 2^{h}a_{2^{(h+1)}}≀ βˆ‘_{k=2^ h+1}^{2^{(h+1)}}a_ k≀ 2^{h}a_{2^{h}}\quad .\label{eq:32rn2lp} \end{equation}
24

We note now that

\[ βˆ‘_{h=0}^ Nβˆ‘_{k=2^ h+1}^{2^{(h+1)}}a_ k = βˆ‘_{n=2}^{2^{N+1}}a_ n \]

and therefore

\[ βˆ‘_{h=0}^βˆžβˆ‘_{k=2^ h+1}^{2^{(h+1)}}a_ k= \lim _{Nβ†’βˆž} βˆ‘_{h=0}^ Nβˆ‘_{k=2^ h+1}^{2^{(h+1)}}a_ k= \lim _{Nβ†’βˆž} βˆ‘_{n=2}^{2^{(N+1)}}a_ n {=} βˆ‘_{n=2}^∞ a_ n \quad . \]

so we can add the terms in 24 to get

\[ βˆ‘_{h=0}^∞ 2^{h}a_{2^{(h+1)}}≀ βˆ‘_{n=2}^∞ a_ nβ‰€βˆ‘_{h=0}^∞ 2^{h}a_{2^{h}} \]

where the term on the right is finite if and only if the one on the left is finite, because

\[ βˆ‘_{h=0}^∞ 2^{h}a_{2^{h}}=a_ 1 + 2 βˆ‘_{h=0}^∞ 2^{h}a_{2^{(h+1)}}\quad : \]

the proof ends by the comparison theorem

Download PDF
Bibliography
Book index
  • test, Cauchy condensation ---
  • Cauchy, condensation test
  • convergence, of a series
Managing blob in: Multiple languages
This content is available in: Italian English