EDB β€” 2DT

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Definition 1

[2DT]Consider a set \(A\), a function \(f:A\to {\mathbb {R}}\) and a sequence of functions \(f_ n:A\to {\mathbb {R}}\). We will say that \(f_ n\) converges to \(f\) pointwise if

\[ \forall x\in A~ ,~ \lim _{n\to \infty }f_ n(x) = f(x)\quad . \]

We will say that \(f_ n\) converges to \(f\) uniformly if

\[ \forall \varepsilon {\gt}0 \exists N\in {\mathbb {N}}, \forall n \ge N,\forall x\in A~ ,~ |f_ n(x) - f(x)|{\lt}\varepsilon \quad . \]

Download PDF
Bibliography
Book index
  • convergence, pointwise ---
  • convergence, uniform ---
  • pointwise , see convergence, pointwise
  • uniform , see convergence, uniform
  • convergence, uniform ---
  • convergence, pointwise ---
Managing blob in: Multiple languages
This content is available in: Italian English