EDB β€” 0XH

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0XH] Prove these fundamental relation.

    1. \(|1|_ p=1\) and more generally \(|n|_ p≀ 1\) for every nonnull integer \(n\), with equality if \(n\) is not divisible by \(p\).

    2. Given \(n\) nonnull integer, we have that \(|n|_ p=p^{-πœ‘_ p(n)}\).

    3. Given \(n,m\) integers, we have that \(πœ‘_ p(n+m)β‰₯ \min \{ πœ‘_ p(n),πœ‘_ p(m)\} \) with equality if \(πœ‘_ p(n)β‰  πœ‘_ p(m)\).

    4. Given \(n,m\) nonzero integers, we have that \(πœ‘_ p(nm)=πœ‘_ p(n)+πœ‘_ p(m)\) and therefore \(|nm|_ p=|n|_ p |m|_ p\).

    5. Given \(x=a/b\) with \(a,b\) nonnull integers we have that \(|x|_ p=p^{-πœ‘_ p(a)+πœ‘_ p(b)}\). Note that if \(a,b\) are coprime, then one of the two terms \(πœ‘_ p(a),πœ‘_ p(b)\) is zero.

    6. Prove that \(|x y|_ p = |x|_ p |y|_ p\) for \(x,yβˆˆβ„š\).

    7. Prove that \(|x/y|_ p = |x|_ p / |y|_ p\) for \(x,yβˆˆβ„š\) nonzero.

    [ [0XJ]] [ [0XK]]

Download PDF
Managing blob in: Multiple languages
This content is available in: Italian English