Exercises
[0XH] Prove these fundamental relation.
\(|1|_ p=1\) and more generally \(|n|_ pβ€ 1\) for every nonnull integer \(n\), with equality if \(n\) is not divisible by \(p\).
Given \(n\) nonnull integer, we have that \(|n|_ p=p^{-π_ p(n)}\).
Given \(n,m\) integers, we have that \(π_ p(n+m)β₯ \min \{ π_ p(n),π_ p(m)\} \) with equality if \(π_ p(n)β π_ p(m)\).
Given \(n,m\) nonzero integers, we have that \(π_ p(nm)=π_ p(n)+π_ p(m)\) and therefore \(|nm|_ p=|n|_ p |m|_ p\).
Given \(x=a/b\) with \(a,b\) nonnull integers we have that \(|x|_ p=p^{-π_ p(a)+π_ p(b)}\). Note that if \(a,b\) are coprime, then one of the two terms \(π_ p(a),π_ p(b)\) is zero.
Prove that \(|x y|_ p = |x|_ p |y|_ p\) for \(x,yββ\).
Prove that \(|x/y|_ p = |x|_ p / |y|_ p\) for \(x,yββ\) nonzero.