EDB — 1YW

view in whole PDF view in whole HTML

View

English

3.10 Cardinality[1YW]

[22B]

Proposition 23

[1Z9]

In the following, let \(E_ 0=∅\), and let \(E_ n=\{ 1, \ldots n\} \) otherwise if \(n ≥ 1 \).

Lemma 24

[2GK]

Definition 25

[1B1]

Note that the null map \(f: ∅ → ∅ \) is a bigection; and \(|A|=0 ⇔ A=∅\). The following exercise is a fundamental result.

Exercise 26

[2GH]

We recall Theorem 1.12.2 of the notes [ 3 ] , for convenience.

Theorem 27

[02S]

Definition 28

[2DD]

Finite sets

E28

[02T]

E28

[02W]

E28

[02Y]

E28

[22K]

Comparison

E28

[030]

E28

[031]

E28

[032]

E28

[034]

E28

[036]

E28

[038]

E28

[03C]

E28

[03F]

Countable cardinality

Definition 29

[2DF]

E29

[03H]

E29

[03M]

E29

[03P]

E29

[03R]

Cardinality of the continuum

Definition 30

[03V]

Remark 31

[2F2]

[ [03W]]

E31

[03X]

E31

[03Y]

E31

[040]

E31

[043]

E31

[045]

In general

Let’s add some more general exercises.

E31

[048]

E31

[04B]

E31

[04D]

E31

[04G]

E31

[04J]

E31

[22M]

E31

[04M]

E31

[04P]

E31

[04R]

E31

[04V]

E31

[04X]

E31

[04Z]

Remark 32

[27H]

E32

[051]

E32

[053]

E32

[055]

E32

[057]

Other interesting exercises are [0T9], [0MZ].

QuasiEsercizio 13

[1ZB]

QuasiEsercizio 14

[05B]

QuasiEsercizio 15

[05C]

QuasiEsercizio 16

[05F]

QuasiEsercizio 17

[05G]

Power

Recall that \(A^ B\) is the set of all functions \(f:B→ A\). We will write \(|2^ A|\) to indicate the cardinality of the set of parts of \(A\).

E32

[05J]

E32

[05M]

In general in case \(|B|{\gt}|A|\) the study of the cardinality of \(|B^ A|\) is very complex (even in seemingly simple cases like \(A=ℕ\)).

[ [05Q]]

Download PDF
Bibliography
Book index
  • cardinality
  • cardinality, finite ---
  • cardinality, comparison
  • cardinality, countable
  • cardinality, continuum ---
Managing blob in: Multiple languages
This content is available in: Italian English