EDB β€” 16Z

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [16Z] Topics:simplex.

    Given \(x_ 0,\ldots x_ k∈ ℝ^ n\), let

    \begin{equation} \left\{ βˆ‘_{i=0}^ k x_ i t_ i : βˆ‘_{i=0}^ k t_ i=1 βˆ€ i, t_ iβ‰₯ 0 \right\} \label{eq:simplesso} \end{equation}
    4

    the set of all possible combinations: prove that this set is convex.

    When the vectors \(x_ 1-x_ 0,x_ 2-x_ 0\ldots x_ k-x_ 0\) are linearly independent, the set defined above is a simplex of dimension \(k\).

    Show that, if \(n=k\), then the simplex has a non-empty interior, equal to

    \begin{equation} \left\{ βˆ‘_{i=0}^ n x_ i t_ i : βˆ‘_{i=0}^ n t_ i=1 βˆ€ i, t_ i> 0 \right\} \label{eq:interno_ simplesso} \end{equation}
    5

Download PDF
Bibliography
Book index
  • simplex
  • convex function
Managing blob in: Multiple languages
This content is available in: Italian English