Exercises
[16Z] Topics:simplex.
Given \(x_ 0,\ldots x_ kβ β^ n\), let
\begin{equation} \left\{ β_{i=0}^ k x_ i t_ i : β_{i=0}^ k t_ i=1 β i, t_ iβ₯ 0 \right\} \label{eq:simplesso} \end{equation}4the set of all possible combinations: prove that this set is convex.
When the vectors \(x_ 1-x_ 0,x_ 2-x_ 0\ldots x_ k-x_ 0\) are linearly independent, the set defined above is a simplex of dimension \(k\).
Show that, if \(n=k\), then the simplex has a non-empty interior, equal to
\begin{equation} \left\{ β_{i=0}^ n x_ i t_ i : β_{i=0}^ n t_ i=1 β i, t_ i> 0 \right\} \label{eq:interno_ simplesso} \end{equation}5