7 Sequences and series[0CN]
7.1 Sequences
Let \((a_ n)_{n∈ℕ}⊆ ℝ\) be a real-valued sequence (as defined in [16G]).
Given \(N∈ ℕ\) we will write \(\sup _{n≥ N} a_ n\) in the following, instead of \(\sup \{ a_ N,a_{N+1}\ldots \} \), and similarly for the infimum. (This is in accordance with [20H])
- E71
- E71
- E71
- E71
- E71
- E71
- E71
- E71
- E71
- E71
- E71
72
73
21
Summation by parts
22
7.2 Recursive sequences
7.3 Series
Tests
74
Root test
75
Ratio test
76
77
78
Dirichlet criterion
79
Alternating series test, or Leibniz test
80
Exercises
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
- E80
23
24
25
26
27
28
29
Cauchy product
81
7.4 Generalized sequences, or “nets’
7.5 Generalized series
Generalized series with positive terms
82